TitleNutrients cause grassland biomass to outpace herbivory.
Publication TypeJournal Article
Year of Publication2020
AuthorsBorer ET, Harpole WS, Adler PB, Arnillas CA, Bugalho MN, Cadotte MW, Caldeira MC, Campana S, Dickman CR, Dickson TL, Donohue I, Eskelinen A, Firn JL, Graff P, Gruner DS, Heckman RW, Koltz AM, Komatsu KJ, Lannes LS, MacDougall AS, Martina JP, Moore JL, Mortensen B, Ochoa-Hueso R, H Venterink O, Power SA, Price JN, Risch AC, Sankaran M, Schütz M, Sitters J, Stevens CJ, Virtanen R, Wilfahrt PA, Seabloom EW
JournalNat Commun
Volume11
Issue1
Pagination6036
Date Published2020 11 27
ISSN2041-1723
Abstract

Human activities are transforming grassland biomass via changing climate, elemental nutrients, and herbivory. Theory predicts that food-limited herbivores will consume any additional biomass stimulated by nutrient inputs ('consumer-controlled'). Alternatively, nutrient supply is predicted to increase biomass where herbivores alter community composition or are limited by factors other than food ('resource-controlled'). Using an experiment replicated in 58 grasslands spanning six continents, we show that nutrient addition and vertebrate herbivore exclusion each caused sustained increases in aboveground live biomass over a decade, but consumer control was weak. However, at sites with high vertebrate grazing intensity or domestic livestock, herbivores consumed the additional fertilization-induced biomass, supporting the consumer-controlled prediction. Herbivores most effectively reduced the additional live biomass at sites with low precipitation or high ambient soil nitrogen. Overall, these experimental results suggest that grassland biomass will outstrip wild herbivore control as human activities increase elemental nutrient supply, with widespread consequences for grazing and fire risk.

DOI10.1038/s41467-020-19870-y
Alternate JournalNat Commun
PubMed ID33247130
Email to communications office: Email to communications office