Geometry of gene regulatory dynamics.
Title | Geometry of gene regulatory dynamics. |
Publication Type | Journal Article |
Year of Publication | 2021 |
Authors | Rand DA, Raju A, Sáez M, Corson F, Siggia ED |
Journal | Proc Natl Acad Sci U S A |
Volume | 118 |
Issue | 38 |
Date Published | 2021 Sep 21 |
ISSN | 1091-6490 |
Abstract | Embryonic development leads to the reproducible and ordered appearance of complexity from egg to adult. The successive differentiation of different cell types that elaborate this complexity results from the activity of gene networks and was likened by Waddington to a flow through a landscape in which valleys represent alternative fates. Geometric methods allow the formal representation of such landscapes and codify the types of behaviors that result from systems of differential equations. Results from Smale and coworkers imply that systems encompassing gene network models can be represented as potential gradients with a Riemann metric, justifying the Waddington metaphor. Here, we extend this representation to include parameter dependence and enumerate all three-way cellular decisions realizable by tuning at most two parameters, which can be generalized to include spatial coordinates in a tissue. All diagrams of cell states vs. model parameters are thereby enumerated. We unify a number of standard models for spatial pattern formation by expressing them in potential form (i.e., as topographic elevation). Turing systems appear nonpotential, yet in suitable variables the dynamics are low dimensional and potential. A time-independent embedding recovers the original variables. Lateral inhibition is described by a saddle point with many unstable directions. A model for the patterning of the eye appears as relaxation in a bistable potential. Geometric reasoning provides intuitive dynamic models for development that are well adapted to fit time-lapse data. |
DOI | 10.1073/pnas.2109729118 |
Alternate Journal | Proc Natl Acad Sci U S A |
PubMed ID | 34518231 |