The Ca2+ Channel CNGC19 Regulates Arabidopsis defense against Spodoptera Herbivory.
Title | The Ca2+ Channel CNGC19 Regulates Arabidopsis defense against Spodoptera Herbivory. |
Publication Type | Journal Article |
Year of Publication | 2019 |
Authors | Meena MKumar, Prajapati R, Krishna D, Divakaran K, Pandey Y, Reichelt M, Mathew MK, Boland W, Mithöfer A, Vadassery J |
Journal | Plant Cell |
Date Published | 2019 May 10 |
ISSN | 1532-298X |
Abstract | Cellular calcium elevation is an important signal used by plants for recognition and signaling of environmental stress. Perception of the generalist insect, Spodoptera litura, by Arabidopsis thaliana activates cytosolic Ca2+ elevation, which triggers downstream defense. However, not all the Ca2+ channels generating the signal have been identified, nor are their modes of action known. We report on a rapidly activated, leaf vasculature- and plasma membrane-localized, CYCLIC NUCLEOTIDE GATED CHANNEL19 (CNGC19), which activates herbivory-induced Ca2+ flux and plant defense. Loss of CNGC19 function results in decreased herbivory defense. The cngc19 mutant shows aberrant and attenuated intra-vascular Ca2+ fluxes. CNGC19 is a Ca2+ permeable channel, as hyperpolarization of CNGC19-expressing Xenopus oocytes in the presence of both cAMP and Ca2+ results in Ca2+ influx. Breakdown of Ca2+-based defence in cngc19 mutants leads to a decrease in herbivory-induced JA-Ile biosynthesis and expression of JA responsive genes. cngc19 mutants are deficient in aliphatic glucosinolate accumulation and hyperaccumulate its precursor, methionine. CNGC19 modulates aliphatic glucosinolate biosynthesis in tandem with BRANCHED-CHAIN AMINO ACID TRANSAMINASE4 (BCAT4), which is involved in the chain elongation pathway of Met-derived glucosinolates. Furthermore, CNGC19 interacts with herbivory-induced CALMODULIN2 (CaM2) in planta. Together, our work reveals a key mechanistic role for the Ca2+ channel CNGC19 in the recognition of herbivory and the activation of defense signaling. |
DOI | 10.1105/tpc.19.00057 |
Alternate Journal | Plant Cell |
PubMed ID | 31076540 |