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A B S T R A C T

The dynamic nature of the tau protein under physiological conditions is likely to be critical for it to perform its diverse functions inside a cell. Under some conditions,
this intrinsically disordered protein assembles into pathogenic aggregates that are self-perpetuating, toxic and infectious in nature. The role of liquid-liquid phase
separation in the initiation of the aggregation reaction remains to be delineated. Depending on the nature of the aggregate, its structure, and its localization,
neurodegenerative disorders with diverse clinical features are manifested. The prion-like mechanism by which these aggregates propagate and spread across the
brain is not well understood. Various factors (PTMs, mutations) have been strongly associated with the pathological aggregates of tau. However, little is known about
how these factors modulate the pathological properties linked to aggregation. This review describes the current progress towards understanding the mechanism of
propagation of tau aggregates.

1. Introduction

1.1. The tau protein

Tau is an intrinsically disordered protein (IDP) that binds to mi-
crotubules (MT) and stabilizes them [1]. The human tau gene, MAPT
(microtubule-associated protein tau), is located on chromosome 17q21
[2]. It comprises of 16 exons, and alternative splicing of exons 2, 3 and
10 generates six isoforms of the tau protein [2] (Fig. 1). The isoforms
can be grouped into two classes: the tau-3R class members contain three
microtubule binding repeats (MTBRs) while the tau-4R class members
contain four MTBRs (Fig. 1). Tau is a cytosolic protein which is seen to
be mainly expressed in the neurons of the central nervous system, and
the six isoforms are equally expressed in a healthy adult brain [2–5].
Changes in the relative amounts of these isoforms have been shown to
be linked with various tauopathies [2,3]. Different disease-linked mu-
tations such as R5H, R5L, N279K, ΔK280, L266V, G272V have been
shown to alter the relative amounts of tau isoforms, by influencing the
alternative splicing of exon 10 [3,6].

1.2. Structure and function of the tau protein

The longest isoform of tau (2N4R) contains 441 amino acid residues.
It contains mainly polar and charged amino acid residues, and hence, it
is highly soluble in water under physiological conditions. The N-term-
inal region (~120 residues) contains mainly acidic amino acid residues,

whereas the proline-rich domains, P1 and P2, contain basic amino acid
residues. The four MTBRs are basic in nature, and each repeat is made
of ~ 31 amino acid residues. The four MTBRs are similar, but not
identical, in sequence.

In-vitro, purified recombinant human tau is functional and un-
structured under physiological conditions as probed by circular di-
chroism (CD) [7], Fourier transform infrared (FTIR) spectroscopy [7],
NMR [8], and small-angle X-ray scattering (SAXS) [9]. An analysis of its
sequence has, however, suggested that tau may acquire local residual
structures (α-helices, β-sheets, polyproline-II helices) in various se-
quence segments [10]. A fluorescence resonance energy transfer (FRET)
based study has suggested a 'paperclip' model for tau, wherein the N-
terminal, C-terminal and repeat domains are folded in such a manner
that these regions approach each other [11].

Many IDPs are known to gain structure after binding to other pro-
teins [12]. Hence, it was hypothesized that tau also might fold or gain
structure after binding to MTs, but various studies using cryo-electron
microscopy (cryo-EM), NMR and single-molecule FRET have shown
that tau remains predominantly unstructured after binding to MTs
[13–18]. All MTBRs were found to interact with MTs, and each MTBR
acquires an extended conformation [13]. Being an IDP, tau is likely to
adopt multiple conformations under various conditions, and to show
promiscuous binding [19], unlike a well-folded protein whose structure
restricts binding to only one type of ligand.

Tau is known to stabilize MTs and promote their assembly, and
hence, to regulate MT dynamics [1,20]. To understand the
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physiological role of tau, knock-out studies were carried out in mice.
Surprisingly, no developmental defects were observed [21,22]. Hence,
it was concluded that tau is not an essential gene. These studies did not,
however, conclude that tau is a non-functional protein. It is possible
that the expression of a similar other protein might compensate for the
loss of tau function in tau knock-out mice [23]. Detailed studies on the
tau knock-out mice concluded that tau might be involved in the for-
mation of neuronal circuits [23–26]. Although not an essential protein,
tau may have different functions under various conditions, which might
help a cell to survive under stress.

1.3. Tau aggregation and its role in neurodegenerative diseases

Tau aggregates have been identified in various neurodegenerative
diseases including Alzheimer's disease (AD), Parkinson's disease (PD),
progressive supranuclear palsy (PSP), Pick's disease, frontotemporal
dementia with parkinsonism-17 (FTDP-17), corticobasal degeneration
(CBD), argyrophilic grain disease, and chronic traumatic encephalo-
pathy (CTE) [21,27]. Despite a strong association of tau aggregates with
various diseases, it is not known whether tau aggregates cause the
disease, or are an effect of the disease. In neurodegenerative diseases,
other proteins such as α-synuclein, Aβ, and TDP-43 have also been
shown to co-aggregate with tau [28–31]. It is not clear whether these
proteins interact to induce the aggregation of each other, or whether
they form aggregates independently. Tau and α-synuclein have been
shown to influence the aggregation of each other in a synergistic
manner [32–34]. The interaction of tau and Aβ appears to be essential
for the in vivo formation of aggregates of tau and Aβ [28–30]. Aβ ag-
gregates were found to induce neurotoxicity in mice when tau was
expressed with Aβ, whereas neurons were unaffected in tau knockout
mice [28]. This study suggested that the interaction of tau with other
proteins is essential for the development of the disease pathology. It is,
however, not well understood how the interaction of tau with other
proteins helps in the development of the pathology.

Tau aggregates isolated from diseased patients, were found to be
hyper-phosphorylated [35,36] and acetylated [37]. It seems that
phosphorylation and acetylation play a crucial role in determining the
fate of tau. Hence, much effort has been put into identifying the role of
phosphorylation and acetylation. It has been shown that depending on
the site, these post-translation modifications (PTMs) can induce or in-
hibit the aggregation of tau, as well as its affinity for MTs [37–45]. It
therefore becomes important to understand how these modifications
alter the binding affinity of tau to MTs, and the aggregation of tau. Tau
is positively charged at physiological pH, and phosphorylation reduces
the net positive charge, which appears to induce the aggregation of the
protein. In-vitro, tau remains soluble under physiological conditions,
and negatively charged molecules such as glycosaminoglycans, fatty
acids, detergents, and nucleic acids, act as inducers of tau aggregation

[46–49]. It is possible that in cells, the binding affinity of tau to MTs (to
regulate MT dynamics) is modulated by altering the sites and extent of
PTMs. More experiments need to be carried out to generalize the role of
PTMs in neurodegenerative diseases.

Other than PTMs, various mutations in the MAPT gene have been
shown to be linked to tau pathologies [3,6]. Mutations may be patho-
genic because they suppress the function of tau, by reducing the binding
affinity of tau for MTs, which can be detrimental to neurons. A few
mutations (P301L, ΔK280) which have been linked to various tauo-
pathies, promote the aggregation of tau [3,6]. Many mutations influ-
ence the alternative splicing of tau pre-mRNA, which perturbs the ratio
of tau-3R to tau-4R in neurons [3,6,50]. Changes in the ratio of the two
isoforms of tau has been shown to result in pathogenicity [50–52].
Depending on the isoform of tau present in the aggregates, tauopathies
have been divided into three categories. In AD, both isoforms of tau,
tau-3R, and tau-4R were found in the aggregates [53]. In PSP, only tau-
4R was found in the aggregates [54]. In Pick's disease, tau aggregates
contained only tau-3R [53]. Aggregates formed by the two isoforms of
tau could not cross-seed each other; a cross-seeding barrier appears to
be present between tau-3R and tau-4R. This type of barrier appears to
be similar to the species barrier observed in the case of the prion, which
determines the infectivity of the prion protein [55,56]. In-vitro, an
asymmetric cross-seeding barrier between the two isoforms of tau has
been observed, wherein tau-3R fibrils can seed tau-4R monomers, but
the vice-versa is not true [57,58]. One of the disease-linked mutations
(ΔK280) in tau has been shown to affect the cross-seeding barrier [59].
Fibrils of tau-4R having this mutation could seed tau-3R monomers.
Thus, no cross-seeding barrier was observed for this mutant variant of
tau [59].

1.4. Structure of tau aggregates and polymorphism

Proteins such as α-synuclein, Aβ, prion, β2-microglobulin, hun-
tingtin, and tau, form amyloid fibrils under various physico-chemical
conditions [60–65]. In amyloid fibrils, the protein acquires a mainly
ordered cross-β-sheet structure in which monomers stack on top of each
other and form intermolecular hydrogen bonds, and β-sheets are or-
iented perpendicular to the fibril axis. In the cross-β-sheet structure, the
backbone amide and carbonyl groups of the protein interact with each
other to form intermolecular hydrogen bonds, which provide sufficient
stability to the cross-β-sheet structure [66,67]. Hence, irrespective of
the amino acid sequence, the exposure of backbone amide groups ap-
pears to be essential for amyloid fibril formation. Amyloid fibrils are
thermodynamically more stable than the native fold, due to the pre-
sence of additional intermolecular hydrogen bonding interactions
[66–69]. Not surprisingly then, amyloid fibrils are found to be more
resistant to heat, denaturants, extreme pH, pressure and proteases.

Aggregates formed by the tau protein have been shown to have
characteristics of amyloid fibrils [60]. Tau fibrils extracted from dis-
eased tissue have been found by electron microscopy (EM) to possess
multiple morphologies, including paired helical filaments (PHFs) and
straight filaments (SFs) [21,70]. PHFs are twisted double helical rib-
bons with heights varying between 8 and 20 nm, and with a half per-
iodicity of about 80 nm, whereas SFs have a height of about 15 nm
throughout the filament [21,70]. These fibrils have parallel, in-register,
cross-β-sheets [68,71,72] in which R2, R3, and R4 form the structural
core [71,73–76]. Studies utilizing the limited digestion of tau fibrils
with proteases in conjunction with SDS-PAGE, have identified the cri-
tical peptide stretches that are essential for fibril formation [77]. Two
peptide segments, VQIINK (PHF6*) and VQIVYK (PHF6) (present in R2
and R3, respectively) were found to be part of the structural core of tau
aggregates, and appear to be essential for the formation of tau fibrils
[78]. The I277P and I308P mutations in these peptide segments com-
pletely inhibit the aggregation of tau protein [79,80]. In-vitro, the ag-
gregation of recombinant tau protein in the presence of an inducer
under physiological pH leads to the formation of amyloid fibrils which

Fig. 1. Different isoforms of tau present in the human brain. The MAPT gene
which codes for human tau contains 16 exons. Alternative splicing of exons 2, 3
and 10 results in six isoforms. These isoforms have different numbers of N and R
(MTBR) repeats, and are divided into two classes; tau-3R and tau-4R.
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are morphologically similar to those formed in vivo [81,82]. Recently, it
was found that heparin-induced tau fibrils are polymorphic in nature,
and different from those formed in Alzheimer's and Pick's diseases
[83,84].

A high-resolution structure of the filaments formed by the peptide
VQIVYK, has been solved. It showed that the peptides form a parallel,
in-register, cross-β-sheet [68]. The structure uncovered new sites for
the design of inhibitors of tau aggregation [68,85]. Recently, cryo-EM
has been used to solve the structures of the full-length tau filaments
extracted from two different diseased patients, in which residues 306-
378 form the structural core [86,87]. AD-linked filaments have mainly
two types of morphologies: SFs and PHFs [86,88]. The two kinds of
filaments have similar structural folds, but the interacting region be-
tween the two protofilaments is different for the straight filaments and
for the PHFs [86]. Filaments extracted from Pick's disease patients,
which contain only the tau-3R isoform, have a structural fold different
from that of AD-linked filaments [87]. The demonstration that two
different structural folds are associated with two different diseases,
suggests that differences in structural folds determine the type of pa-
thology, although it is not clear how this happens.

1.5. Prion-like self-propagation and the infectious nature of tau fibrils

Prions are proteinaceous infectious particles made of the misfolded
conformation of the prion protein, and posess a cross-β-sheet structure
[89,90]. These misfolded aggregates, which are similar to the amyloid
fibrils formed by other proteins, can act like seeds, and can convert
native protein into misfolded aggregates with similar structural and
functional properties [90]. Faithful propagation of different misfolded
conformations in such a template-dependent manner is a key feature of
prion-like behavior. Prion-like propagation of aggregates occurs via
several steps, including uptake of aggregates by cells, template-depen-
dent elongation of aggregates by recruiting free monomer protein,
fragmentation of aggregates, release of aggregates from the cell, and
intercellular transfer of aggregates [91,92]. Propagation could be the
unintended consequence of the amyloid fibrillary aggregates being
extremely stable and not dissociating easily; cells can get rid of them
only by secreting them to their outside. The secreted fibrils appear to be
taken up by another cell, and induce the aggregation of soluble native
protein in that cell, via a prion-like mechanism (Fig. 2) [93]. Prions are
also well known for their ability to stably propagate their misfolded
conformation from one organism to other and generate the same

pathology [90].
The ability of the prion protein to undergo template-driven con-

formation conversion, and the ability of aggregated prion protein to
propagate from one cell to another, are shared by the amyloid fibrillar
aggregates formed by several other proteins, including α-synuclein
[94], tau [91,95,96], Aβ [97,98], and huntingtin protein [99,100].
These proteins too can acquire alternative self-propagating conforma-
tions [91,92]. It is the capability of the amyloid fibrils formed by these
proteins to propagate across different cells, tissues, organs, individuals,
and species, which makes them infectious particles like the prion. The
faithful self-propagation of misfolded aggregates in various biological
systems has been linked to multiple protein misfolding diseases
[91,92]. The physical and chemical parameters which determine the
extent of infectivity and propagation are not well understood quanti-
tatively.

In different tauopathies, a large multitude of neurons are found to
contain a variety of inclusions which are composed mainly of tau
protein [91,92]. It is possible that these aggregates form autonomously
in each of the neuronal cells, but this is unlikely given the stochastic
nature of de novo aggregation. A more likely possibility is that the
formation of inclusion initiates at a specific location in the brain and
then propagates to other parts of the brain. The appearance of tau in-
clusions in different parts of the brain does not occur in a disorderly
manner with no pattern. Instead, the manner in which the inclusions
appear at various stages during the propagation of disease suggests that
tau inclusions spread in a prion-like manner from one cell to adjacent
cells [101]. In different tauopathies, inclusions of tau begin to spread
from different regions of brains. In Pick's disease, they start spreading
from the fronto-temporal cortex and limbic regions [102]; in AD, from
the locus coeruleus and transentorhinal cortex [101,103]; and in CTE,
from the corticle sulci [104]. The injection of human tau inclusions into
the intracerebral region of a mice brain expressing human tau, was
found to induce the formation of tau inclusions, which then spread into
various distant regions of the brain [95], leading to neuronal loss [105].
The pathology was found to spread to regions of the brain that were
synaptically connected [106–109].

Extracellular tau aggregates can be taken up by cells, and once
taken up, these aggregates can induce or catalyze the aggregation of the
host cytosolic tau monomer [110,111]. As reviewed by Scialo et al.
[116], tau aggregates seem to be taken up by cells by multiple me-
chanisms including macropinocytosis/endocytosis, micrpopinocytosis,
heparan sulfate proteoglycans, and tunneling nanotubes [112–116].

Fig. 2. A schematic representation of the cell to cell
propagation of tau fibrils. Inside a cell, the formation
of tau fibrils follows a NDP mechanism, in which
formation of a trimeric nucleus is the rate-limiting
step. This nucleus elongates by recruiting and con-
verting the soluble monomer into amyloid fibrils.
Fragmentation of tau fibrils generates new catalytic
seeds which makes the process autocatalytic in
nature. These fibril fragments can be secreted out,
and taken up by a recipient cell, where they convert
soluble functional tau into pathological tau fibrils.
Such a mechanism for the propagation of tau fibrils
across cells is similar to a prion-like mechanism.
[Reproduced and modified from ref [58]. Copyright
2018 Elsevier].
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While the entry of tau monomer into cells was found to occur via a rapid
dynamin- and actin-dependent macropinocytosis (endocytosis) me-
chanism, tau aggregates mainly take the dynamin-dependent route to
enter the cell [114]. Monomeric tau could enter into cells as efficiently
as aggregated tau [114]. Until recently, it appeared that only ag-
gregated tau is able to induce the aggregation of monomeric tau [115].
Nevertheless, a recent study has suggested that a different conformation
of monomeric tau can be taken up by cells, and that this monomeric
conformation can then seed the aggregation of monomeric tau [117].
Other than endocytosis, a trans-synaptic pathway has also been pro-
posed for the movement of tau between cells [118].

The secretion of tau from cells is crucial for spreading the pa-
thology, but the mechanism by which aggregated tau is secreted is
poorly defined. The secretion of tau aggregates by cells to the outside
seems to be important for the trans-cellular movement of tau [111]. A
recent study suggests that soluble tau can be secreted through direct
translocation across the plasma membrane, and that this un-
conventionally secreted tau is able to spread trans-cellularly and induce
the aggregation of tau in the host cell [119].

Structurally different types of fibrils have been observed to be
formed by the same protein under the same conditions [120–123]. The
populations of the different aggregates appear to be regulated by var-
ious factors such as PTMs [124], mutations [125], the presence of small
molecules, and solution conditions [123]. The different conformational
variants of the aggregates formed by the same protein, which possess
different chemical and pathological properties, are known as strains.
Depending on the physico-chemical conditions, a particular strain
might get selected, and self-propagate from one cell to the another, and
determine the type of pathology [92,126]. This type of behavior was
first observed for the prion protein, for which each strain were asso-
ciated with different prion diseases [90,127]. Tau aggregates are also
known to propagate by a prion-like mechanism in which various tau
strains can propagate from cell to cell, and region to region in the brain
[91,92,96,110,111,128–131]. The tau aggregates may recruit free so-
luble monomer and convert them into fibrils (Fig. 2)
[96,110,111,128–130]. These fibrils may further dissociate into small

fragments which can act as seeds and infect other cells, resulting in the
propagation of the pathology throughout the entire brain
[92,111,130,132].

Since tau is expressed intracellularly in a soluble form, the spread of
tau aggregates in cells and tissues, requires the uptake of tau aggregates
into a cell, seeding of the aggregation of intracellular tau, and the re-
lease of aggregates [92,96,111,131]. Tauopathies, which are associated
with tau aggregates, are neurodegenerative disorders with diverse
clinical features [21,96,133]. In different tauopathies, inclusions of tau
were found to stain differently suggesting that they are present in di-
verse conformations [134]. Various conformations (different strains
with different biochemical properties) of tau inclusions, which behave
like prion strains, were identified when cells expressing tau were seeded
with homogenates prepared from the brains of 29 patients suffering
from five different tauopathies [96,128,129]. Tau inclusions purified
from the brains of different patients with tauopathies, including AD,
CBD, and PSP seemed to possess different structural folds [135]. The
injection of pathological inclusions of tau isolated from different
tauopathies, into the mouse brain, seeded the aggregation of tau with
different efficiencies [135]. This study suggested that different tau
strains might be responsible for different tauopathies [135]. In the case
of PSP, a distinct tau strain with about 300-fold higher seeding effi-
ciency than AD, CBD, and other PSP tau strains was identified sug-
gesting that different strains of tau might present in different cases of
PSP [135]. Nevertheless, a recent study identified the presence of
structurally similar folds of tau filaments in multiple cases of sporadic
and inherited AD [88]. Different conformations of tau aggregates ap-
pear to be responsible for different tauopathies. However, the link be-
tween different types of strains and various tauopathies is not very well
understood. An understanding of the mechanism of conversion of so-
luble tau into structurally and functionally distinct types of aggregates
in a template-dependent manner is important for understanding the
causes of various tauopathies.

Fig. 3. UVRR monitored kinetics of tau fibril for-
mation. (a) UVRR spectra acquired at different times
of tau fibrillation at pH 7. Dashed lines through the
spectra indicate important bands which correspond
to the different secondary structures. Changes in the
position of the (b) Am I band, and (c) Am III band as
a function of aggregation time. In plots b and c, the 0
h data point is represented using a closed symbol and
the continuous lines through the data points are lines
drawn by inspection, intended to serve as guides for
the eyes. [Reproduced and modified from ref [136].
Copyright 2014 American Chemical Society].
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1.6. Mechanism of tau fibril formation and propagation

Formation of β-sheet fibrils from an intrinsically disordered tau
monomer can be monitored by measuring the increase in β-sheet, or
decrease in disordered structure as a function of time. Different types of
aggregates populated during the tau fibril formation process have been
identified using various structural probes such as NMR [8,73], atomic
force microscopy (AFM) [49,136,137], X-ray diffraction [68], FTIR
[49], cryo-EM [86,87], hydrogen-exchange mass spectrometry (HXMS)
[58,76,138], electron paramagnetic resonance (EPR) spectroscopy
[71], and ultraviolet resonance Raman (UVRR) spectroscopy [136]. The
kinetics of formation of tau aggregates has been monitored using var-
ious biophysical methods such as ThT fluorescence [49,132], light
scattering [139], HX-MS [138], single molecule FRET [140–143], and
UVRR spectroscopy [136]. Fig. 3 shows the UVRR spectroscopy-mon-
itored conversion of intrinsically disordered tau monomer into β-sheet
fibrils as a function of time [136]. It was observed that tau monomer
converts into ordered fibrils in two stages. In the first stage, immature
fibrils were formed from tau monomer (Fig. 3a and 3b). In the second
stage, the immature fibrils converted into mature fibrils with a compact
β-sheet core (Fig. 3a and c).

Tau fibril formation is describable as a nucleation-dependent poly-
merization (NDP) reaction [144]. In a NDP mechanism, the rate-lim-
iting and critical stage is the formation of a nucleus, which is a tran-
sient, unstable conformation that may be monomeric or oligomeric. A
NDP reaction has three defining characteristics: (1) the kinetics of fibril
formation shows a lag phase followed by an elongation phase; (2) the
lag phase is abolished by the addition of preformed fibrils, which act
like a seed; and, (3) there is a critical monomer concentration below
which fibril formation cannot take place. In the case of tau fibril for-
mation, all three criteria are met [49,137,145]. In a NDP mechanism,
nucleus formation takes place early on, and the nucleus elongates to
form long fibrils upon the addition of monomer (Fig. 2) [49,144,145].
Due to the transient nature of the nucleus, there is a controversy about
its size as well as its structure. The size of the tau nucleus was de-
termined by analyzing the dependence of the lag phase on protein
concentration, and the nucleus was found to be a trimer [132]. Sur-
prisingly, a stable tau trimer has also been shown to be the minimal
propagation unit which can act as a seed, when taken up by cells, can
induce the aggregation of cytosolic tau monomer (Fig. 2) [146]. At the
present time, it is not known how different the trimer seed and the
transient trimer nucleus are in conformation. More recently, it has been
reported that there exists a different monomeric conformation of tau,
which when taken up by cells, appears to convert free soluble tau into
amyloid fibrils [117]. Despite the debate on the size of the seed, the
propagation of seeds is thought to spread the pathology across the
brain. It is important to note that tau fibril derived from diseased brain
have a higher seeding activity than fibrils formed by recombinant
protein [115].

Tau fibrils have been shown to elongate by the addition of monomer
and not oligomer to the fibril end [58]. The addition of monomer to
fibril ends can be describable by three different mechanisms. In a
conformation selection mechanism, amyloid fibrils/seeds select and
bind to a compatible conformation of monomer from a pool of het-
erogeneous mixture of monomer conformations, which leads to elon-
gation of the fibrils (Fig. 4a) [147]. It is possible that monomer as well
as fibrils exist in different conformations, and depending on the con-
ditions, compatible conformations of monomer and fibril select and
bind to each other, leading to the growth of heterogeneous amyloid
fibrils [147]. In an induced fit mechanism, monomer first binds to the
fibril ends, and then conformation conversion takes place (Fig. 4b)
[58,148–151]. In a mixed type mechanism, amyloid fibrils/seeds select
and bind to the most compatible conformation of monomer, and then
further conformational conversion of monomer into amyloid fibril
happens. A detailed analysis of monomer concentration-dependent fi-
bril formation kinetics has shown that the elongation of tau fibrils can

be described minimally as a two-step reaction (Induced fit mechanism)
(Fig. 5) [58]. Intrinsically disordered tau monomer first binds to amy-
loid fibrils, and then converts to amyloid fibrils [58]. The transition of
intrinsically disordered protein to β-sheet fibril appears to be similar to
the protein folding reaction.

During and after elongation, tau fibrils may break into fragments,
which further can act as seeds, and catalyze the process of fibril for-
mation (Fig. 2) [132]. The formation of a new catalyst (seed) during the
elongation process makes this process autocatalytic. As reviewed by
Cohen et al. [152], a new catalyst can be formed by secondary path-
ways such as fibril fragmentation, surface catalyzed secondary nu-
cleation and branching [132,152–155]. Analysis of monomer con-
centration-dependent kinetics of fibril formation of tau suggests that
fibril fragmentation is the main secondary pathway, which operates
during the fibril formation of tau [132].

Different PTMs and mutations in tau seem to influence the efficiency
of an aggregate to act as a seed, as well as the efficiency of a monomer
to be seeded. A quantitative description of the interaction between
monomer and aggregate is expected to provide a better understanding
of molecular parameters determining the pathological properties of
aggregates.

1.7. The Michaelis-Menten-like mechanism for the growth of tau fibrils and
its implication

In enzyme kinetics, the dependence of the initial rate of the reaction
on substrate concentration is often describable by a Michaelis-Menten
(MM) mechanism. The initial rate shows an apparently first order de-
pendence at a lower concentration of substrate, and does not depend on
substrate concentration at high substrate concentrations. When the in-
itial rate of tau fibril elongation was determined over a range of
monomer concentrations (Fig. 5a), a non-linear dependence of the in-
itial rate of tau fibril elongation (in the presence of tau seed) on
monomer concentration (Fig. 5b) was observed. The initial rate of fibril
elongation showed a linear dependence on seed concentration (Fig. 5c
and d) as observed for enzyme-catalyzed reactions. The results were
suggestive of a MM-like mechanism, in which free monomer serves as
the substrate, and the seed plays the role of the enzyme.

Thus, the mechanism is describable as:

+ ↔ →F M F. M FF

The MM-like model provides quantitative information about the
binding affinity of the monomer for the fibril end, and about con-
formational conversion of the native monomer to an amyloid form.
Such a simple quantitative approach is expected to help in under-
standing the mechanism of various disease-linked mutations, PTMs,
cofactors, ligands, inducers, and inhibitors in modulating the patholo-
gical properties of tau fibrils.

Modeling the tau fibril elongation reaction to a simple MM-like
model has provided a mechanistic understanding for the asymmetric
cross-seeding barrier which exists between the two isoforms of tau. It
was not understood why tau-3R fibrils could seed tau-4R monomer, but
the reverse was not possible. It was found that tau-4R fibrils had more
catalytic efficiency than tau-3R fibrils [58]. However, tau-3R fibrils had
a higher affinity for tau-3R and tau-4R monomer, than did tau-4R fi-
brils. The absence of R2 in the tau-3R monomer further reduced the
affinity of tau-3R monomer for tau-4R fibrils. Structural characteriza-
tion of tau-3R and tau-4R fibrils showed that two-third of R3 and one-
third of R4 was structured in tau-3R fibrils, whereas this region re-
mained mostly unstructured when R2 was present and formed the
structural core in tau-4R fibrils [58]. Thus, the absence of R2 in the tau-
3R monomer makes it incompatible for binding to tau-4R fibrils.

1.8. Strategies to halt the propagation of amyloid fibrils

The observation of the prion-like behavior of tau, has uncovered
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Fig. 4. Mechanism of fibril growth by monomer
addition. Two types of mechanisms can operate for
fibril elongation by monomer addition. (a) In the
conformation selection mechanism, tau fibrils select
a compatible monomer from a pool of monomer
conformations, and formation of this fibril compa-
tible monomer is the slow and the rate-limiting step.
Hence, the initial rate of fibril elongation shows a
linear dependence on monomer concentration. (b) In
the induced fit mechanism, binding of unfolded tau
monomer to fibril is fast, and the rate-limiting step is
the conformation conversion step in which unfolded
tau monomer converts into β-sheet rich amyloid fi-
brils. Hence, at higher monomer concentration, the
initial rate of fibril elongation does not change with
an increase in monomer concentration, because the
rate-limiting step is conformation conversion.

Fig. 5. Mechanism of tau fibrils elongation – (a) ThT fluorescence-monitored aggregation kinetics of tau at different monomer concentrations in the presence of 2%
seed. (b) Initial rate of fibrillation (obtained by measuring the initial slopes of the kinetic curves shown in panel a) versus the concentration of monomeric tau. (c)
Aggregation kinetics of tau at different seed concentrations. (d) Initial rate of fibrillation (determined from the kinetic curves shown in panel c) versus seed
concentration. The continuous line through the data points in panel b is a best fit for hyperbolic model. [Reproduced and modified from ref [58]. Copyright 2018
Elsevier].
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new steps and states which can be targeted to halt the propagation of
tau fibrils. The following approaches can be used to halt the patholo-
gical process: (1) The first approach would be to block the binding of
tau monomer to fibrils by modulating the properties of the tau
monomer, using PTMs, such that a conformation of tau which cannot
bind to tau fibrils is stabilized. (2) A second approach would be to
shield the tau fibril ends/active sites with designed molecules. Hence,
monomers would not be able to bind the fibril ends. (3) A third ap-
proach would be to stabilize tau fibrils so that they cannot break down
into small fragments, so that the generation of new catalytic seeds,
which could infect other cells and spread the pathology, is blocked. (4)
A fourth approach would be to make use of the concept that the growth
of amyloid fibrils follows a prion-like auto-catalytic mechanism. New
amyloid strains can be generated and screened to find the strains with
maximum catalytic efficiencies, but which are not toxic to the system.
The large pool of free monomer would be consumed and converted into
inert amyloid by such catalytically efficient strains. Hence, pathological
fibrils would not be able to propagate at lower monomer concentration.
In the future, similar approaches can be applied to other amyloid-
forming proteins, and the effects of various physiological variables can
be understood, which should help in the development of new inhibitors.

1.9. The role of liquid-liquid phase separation in tau aggregation

Many proteins such as FUS [156,157], TDP-43 [158–160], and
hnRNPs [156,158,161–163], which contain low complexity domains
(LCD) or prion domains, undergo the phenomenon of liquid-liquid
phase separation (LLPS). LLPS leads to the formation of membrane-less
compartments/organelles which serve multiple biological functions
inside the cell [164–167]. Membrane-less compartments concentrate
various cellular components at a specific location inside the cell, and
can assemble and disassemble rapidly in response to a small signal
[165].

Recently, it was found that tau, despite the absence of LCD and
prion domains, undergoes reversible LLPS and forms condensed liquid
droplets in-vitro as well as inside the cell [168–172]. Droplets of tau
appear to recruit tubulin, which can lead to the regulated assembly of
MT bundles [169,173]. A recent phase diagram for tau provides a de-
tailed insight into the forces driving the process of tau LLPS [171].
Phosphorylation, as well as intracellular molecular crowding, facilitate
the droplet formation of tau [168–170], whereas acetylation of tau
appears to disfavor LLPS [174].

The LLPS of tau, like its aggregation, is facilitated by crowding
agents, RNA, and heparin [168,170–172]. Similar to tau aggregation,
the LLPS of tau is also regulated by PTMs, and disease-linked mutations
[168,170]. These observations suggest that tau aggregation may be
linked to its LLPS. As in the case of FUS and hnRNPs [157,158,175],
whose droplets initiate aggregation, tau droplets too appear to initiate
its aggregation. [168–170].

2. Conclusion

The formation and accumulation of tau aggregates in the brain are
associated with a variety of neurodegenerative diseases. These mis-
folded tau aggregates can replicate and propagate in a prion-like
manner, and spread the pathogenesis in the whole brain. An under-
standing of the prion-like propagation mechanism is essential for de-
signing molecules which can halt the propagation of tau aggregates.
Although two different structural folds of tau filaments have been as-
sociated with different diseases, the parameters that determine the type
of pathology remain poorly understood. The current understanding of
the propagation mechanism of tau fibrils may uncover new strategies
for therapeutic treatment. Drugs that target and inhibit the binding of
monomer to the fibril end, are expected to prevent the propagation of
tau fibrils as well as disease. Finally, how different cellular conditions
affect the LLPS of tau needs to be understood well, and the role played

by LLPS in initiating the pathological aggregation of tau remains to be
delineated.
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