A Thermodynamic Coupling Mechanism Can Explain the GroEL-mediated Acceleration of the Folding of Barstar

Nidhi Bhutani and Jayant B. Udgaonkar*

National Centre for Biological Sciences, Tata Institute of Fundamental Research
UAS-GKVK Campus
Bangalore, 560065
India

Despite extensive structural and kinetic studies, the mechanism by which the Escherichia coli chaperonin GroEL assists protein folding has remained somewhat elusive. It appears that GroEL might play an active role in facilitating folding, in addition to its role in restricting protein aggregation by secluding folding intermediates. We have investigated the kinetic mechanism of GroEL-mediated refolding of the small protein barstar. GroEL accelerates the observed fast (millisecond) refolding rate, but it does not affect the slow refolding kinetics. A thermodynamic coupling mechanism, in which the concentration of exchange-competent states is increased by the law of mass action, can explain the enhancement of the fast refolding rates. It is not necessary to invoke a catalytic role for GroEL, whereby either the intrinsic refolding rate of a productive folding transition or the unfolding rate of a kinetically trapped off-pathway intermediate is increased by the chaperonin.

The Escherichia coli chaperonin GroEL, in association with its co-chaperonin GroES, is involved in the folding of 10-15% of all proteins in the cytosol under normal growth conditions (Ewalt et al., 1997). GroEL is composed of two seven-membered rings of 57 kDa subunits, each having a central cavity of 45 Å diameter (Braig et al., 1994), and stacked back to back to form a double toroid. GroES is made up of seven 10 kDa subunits arranged as a ring (Hunt et al., 1996). In vitro studies have shown that chaperonins can facilitate the folding of a large range of polypeptides under conditions where the spontaneous folding reaction is non-productive or inefficient (Fenton & Horwich, 1997). Although the interplay of GroEL, GroES and nucleotide in chaperonin-assisted folding has been well delineated structurally, the kinetic and molecular events at the level of the refolding polypeptide remain poorly understood.

It has long been presumed that the principal role of the chaperonins is to prevent aggregation of partly folded intermediate forms of proteins by sequestering them inside their cavity, thus providing a favorable micro-environment for the polypeptide to fold (Buchner et al., 1991). More recently, there has also been evidence that GroEL might play a more active role in the folding process, by partially or completely unfolding misfolded conformers, thus allowing them to fold productively (Todd et al., 1996; Weissman et al., 1994; Zahn et al., 1996a). The “unfoldase” activity of GroEL alone has been demonstrated in the case of barnase, which undergoes global unfolding while bound to the GroEL surface (Zahn et al., 1996a,b), and cyclophilin whose secondary structure gets destabilized in the presence of the chaperonin (Zahn et al., 1994). It has been suggested that GroEL accelerates the folding of lysozyme by actively promoting reorganization of misfolded structures (Coyne et al., 1999). The complete chaperonin machinery i.e. GroEL, GroES and ATP, has been reported to actively catalyze the partial unfolding of RuBisCO trapped in a misfolded condition (Shilterman et al., 1999).

*Corresponding author

Keywords: GroEL; barstar; acceleration; refolding kinetics; thermodynamic coupling

E-mail address of the corresponding author: jayant@ncbs.res.in

Abbreviations used: RuBisCO, ribulose-1,5-bisphosphate carboxylase-oxygenase; BSA, bovine serum albumin; ANS, 8-anilino-1-naphthalene sulfonic acid; CD, circular dichroism.
It is difficult to study the role of GroEL in facilitating the folding of its natural substrate proteins, because their folding mechanisms are poorly understood, and the partly folded forms of these proteins, to which GroEL binds, are very aggregation prone. Thus, many of the studies aimed at understanding what transpires to the substrate protein, during GroEL-mediated folding, utilize proteins whose folding pathways have been well characterized. One such model protein is barstar, an 89 amino acid residue, single-domain protein that functions as the natural inhibitor of the ribonuclease, barnase in *Bacillus amyloliquifaciens*, and whose mechanism of folding has been studied extensively (Agashe *et al.*, 1995; Bhuyan & Udgaonkar, 1999; Nolting *et al.*, 1995, 1997; Schreiber & Fersht, 1993; Shastry *et al.*, 1994; Shastry & Udgaonkar, 1995).

Folding mechanism of barstar

Equilibrium unfolded barstar at 25°C consists of 30% fast refolding molecules, U₀, and of 70% slow refolding molecules, Uₛ. The Tyr⁴⁷-Pro⁴⁸ peptide bond is in the native-like cis conformation in the former, while it is in the alternate trans conformation in the latter. In strongly stabilizing conditions, such as those used in the present study, folding has been shown (Shastry & Udgaonkar, 1995) to occur according to mechanism 1 via parallel pathways:

\[
\begin{align*}
\text{Uₘₚ} & \quad \text{N} \\
\text{Uₛ} & \quad \text{N} \\
\text{Uₖ} & \quad \text{N}
\end{align*}
\]

Mechanism 1.

Mechanism 2.

\[
\begin{align*}
K_{\text{U₁}} & \quad k_{\text{slow}} \\
\text{U} & \rightleftharpoons \text{Iₑ} \rightarrow \text{Iₐ} \rightarrow \text{N}
\end{align*}
\]

IE represents an ensemble of rapidly formed intermediates that equilibrate with U prior to the major structural transition to Iₐ, which in turn represents an ensemble of late structured intermediates. Iₑ includes IM₁, IM₂ and IF₁, while Iₐ includes IN and IS₂, and it is likely that both ensembles consist, in addition, of many more intermediates (Bhuyan & Udgaonkar, 1999). According to mechanism 2, a rapid pre-equilibrium is established between U and Iₑ before further transformation to Iₐ, and the observed fast rate of folding is given by \(\lambda₂ = k_{\text{Iₑ}}/[\text{U}] + [\text{Iₑ}] \). Since the slow rate is unaffected by the presence of GroEL, it is not considered further.

GroEL-mediated refolding of barstar

Here, the folding of barstar has been monitored by measurement of the accompanying change in intrinsic tryptophan fluorescence. This is a useful optical probe because GroEL has no tryptophan residues, while barstar has three at positions 38, 44 and 53, with Trp53 making the predominant contribution to the fluorescence (Nath & Udgaonkar, 1997). As seen in Figure 1(a), the folding kinetics of barstar is biphasic, ~90% of the fluorescence change occurs with an apparent rate of 30(±4) s⁻¹, while the remaining ~10% occurs with an apparent rate of 0.018 s⁻¹. The faster rate, \(\lambda₂ \), represents the apparent rate of formation of Iₑ (see above). The slower rate is dominated by the proline isomerization reaction that accompanies the complete folding of Iₑ to N (Schreiber & Fersht, 1993; Shastry & Udgaonkar, 1995). No change in intrinsic tryptophan fluorescence accompanies the formation of Iₑ, which can be monitored only by the capacity of Iₑ to bind ANS, or by a fluorescence energy transfer method that measures compaction of U to Iₑ (Agashe *et al.*, 1995; Shastry & Udgaonkar, 1995).

In the presence of GroEL, the two characteristic phases are retained, suggesting that there is no drastic perturbation of the folding pathway of barstar by GroEL. There is, however, an increase in the apparent rate of the fast phase with increasing concentrations of GroEL (Figure 1(b)) while its relative amplitude is unaltered. Figure 2 shows that this increase in rate is quite significant, with nearly a twofold increase in the presence of fourfold

\[
\text{Iₑ represents an ensemble of rapidly formed intermediates that equilibrate with U prior to the major structural transition to Iₐ, which in turn represents an ensemble of late structured intermediates. Iₑ includes IM₁, IM₂ and IF₁, while Iₐ includes IN and IS₂, and it is likely that both ensembles consist, in addition, of many more intermediates (Bhuyan & Udgaonkar, 1999). According to mechanism 2, a rapid pre-equilibrium is established between U and Iₑ before further transformation to Iₐ, and the observed fast rate of folding is given by \(\lambda₂ = k_{\text{Iₑ}}/[\text{U}] + [\text{Iₑ}] \). Since the slow rate is unaffected by the presence of GroEL, it is not considered further.}

\[
\text{Iₑ represents an ensemble of rapidly formed intermediates that equilibrate with U prior to the major structural transition to Iₐ, which in turn represents an ensemble of late structured intermediates. Iₑ includes IM₁, IM₂ and IF₁, while Iₐ includes IN and IS₂, and it is likely that both ensembles consist, in addition, of many more intermediates (Bhuyan & Udgaonkar, 1999). According to mechanism 2, a rapid pre-equilibrium is established between U and Iₑ before further transformation to Iₐ, and the observed fast rate of folding is given by \(\lambda₂ = k_{\text{Iₑ}}/[\text{U}] + [\text{Iₑ}] \). Since the slow rate is unaffected by the presence of GroEL, it is not considered further.}
\]
excess of GroEL. The dependence of the observed fast folding rate on GroEL concentration is, however, not linear, as would be expected if GroEL plays the role of a catalyst. Instead, the folding rate clearly appears to saturate at higher concentrations of GroEL, as would be expected if the acceleration is a consequence of the simple binding of barstar to GroEL. Since the magnitude of the fluorescence change associated with the fast phase is unaffected by the presence of GroEL, there does not appear to be any fluorescence change associated with the binding of barstar to GroEL. The presence of GroEL does not have any effect on either the rate or relative amplitude of the slow phase (Figure 3).

Barstar is not a natural substrate of GroEL, and it was important to ascertain whether the acceleration in the fast rate of refolding was due to the specific binding of the protein in the GroEL cavity. If this were the case, then prior blocking of the specific binding sites in the central cavity by another substrate known to bind there, should abolish the accelerating effect. This was indeed found to be the case when a known stringent substrate of GroEL, rhodanese, was used for this purpose. A GroEL-rhodanese complex formed by refolding denatured rhodanese in the presence of GroEL was unable to enhance the rate of refolding of barstar (Figure 4). The apical domains of GroEL to which substrates bind constitute a hydrophobic surface (Braig et al., 1994; Fenton et al., 1994), and it was possible that the enhancement in rate might be due to non-specific binding of barstar to any available protein surface. Such a possibility could be ruled out by showing that when barstar was refolded in the presence of bovine serum albumin (BSA), there was no enhancement in rates.

Figure 1. Refolding kinetics of barstar at 25°C, pH 7 in the absence and presence of GroEL. (a) Refolding in 0.6 M urea was initiated by 12-fold dilution of 12 μM barstar in 7.2 M urea into refolding buffer. The continuous horizontal line represents the fluorescence of 1 μM unfolded barstar. The continuous line through the data represents a non-linear least-squares fit of the data to the sum of two exponentials, which are characterized by apparent rate constants of 30(±4) s⁻¹ and 0.018(±0.004) s⁻¹. (b) Fast refolding in the absence and presence of GroEL. 0.5 μM barstar was refolded in 0.6 M urea in the absence (right curve) and presence (left curve) of 3 μM GroEL. Only the fast phase of folding is shown. The data have been normalized such that the signal of the native barstar is identical in both cases. The procedure for purification of barstar has been described (Shastry et al., 1994). Concentrations of barstar were determined using a molar extinction coefficient of 23,000 M⁻¹ cm⁻¹. Rapid kinetic experiments were carried out using a Biologic SFM-4 stopped-flow module, with a dead time of 6 ms. Intrinsic tryptophan fluorescence emission above 320 nm was monitored with the excitation set at 295 nm. Refolding experiments were performed by a 12-fold dilution of the denatured barstar, 6 μM barstar in unfolding buffer (8 M urea in refolding buffer), into refolding buffer (50 mM sodium phosphate, 0.1 M KCl, 0.25 mM DTT, 0.25 mM EDTA at pH 7.0) to give a final barstar concentration during folding of 0.5 μM in 0.6 M urea. GroEL was purified from a GroE-overproducing strain of E.coli harboring the plasmid pOFX6 (Fayet et al., 1986; Viitanen et al., 1990). To remove small, tryptophan-containing contaminating peptides, an extra step involving the reactive-red resin was added, and the eluted protein was impurity-free as judged by tryptophan fluorescence emission. The GroEL preparations were checked for purity and activity as described elsewhere (Clark et al., 1998). The concentrations of GroEL that refer to the 14-mer were determined using an extinction coefficient of ε (0.1 %, 1 cm) = 0.2 at 280 nm (Tsurupa et al., 1998). A Pharma
cia PD-10 column was used to buffer-exchange GroEL into the refolding buffer immediately before use. Refolding experiments were carried out using increasing concentrations of GroEL in the refolding buffer, keeping the final barstar concentration fixed at 0.5 μM. The small contribution of GroEL to the fluorescence signal, which was mainly due to scattering effects, was determined by 12-fold dilution of unfolding buffer not containing barstar into GroEL-containing refolding buffer, and was subtracted appropriately from the refolding traces.
Figure 4 also demonstrates that in the presence of MgATP, GroEL does not mediate acceleration of the fast rate of barstar refolding. MgATP is known to induce an allosteric transition in GroEL to a form with lower affinity for substrate proteins (Sparrer et al., 1996; Staniforth et al., 1994). Thus, it appears that GroEL cannot bind barstar in the presence of ATP and, consequently, the enhancement of the folding rate of barstar does not occur. This result also suggests that ATP hydrolysis and GroES binding are not required for GroEL-mediated folding of barstar. GroEL-mediated acceleration of folding occurs, however, in the presence of MgADP, to an extent similar to that seen in the absence of any nucleotide, suggesting that the ADP-bound form of GroEL and free GroEL have similar affinities for barstar. These observations are in accord with electron-microscopy studies that have shown that GroEL, GroEL-ADP and GroEL-ATP have distinct conformations (Roseman et al., 1996).

Reaction mechanism for the increase in refolding rates

A simple explanation for the GroEL-mediated acceleration of the folding of barstar is based on several previous observations: (1) GroEL may bind to many different partly folded forms of proteins ranging from early collapsed intermediates (Badcoe et al., 1991; Katsumata et al., 1996; Staniforth et al., 1994) to molten globule states (Martin et al., 1991; Katsumata et al., 1996) to late structured folding intermediates (Goldberg et al., 1997; Sparrer et al., 1996) with varying dissociation constants in the 10^{-6} to 10^{-11} M range. (2) GroEL may bind substrate proteins at diffusion-controlled rates with a bimolecular rate constant greater than 10^5 M$^{-1}$ s$^{-1}$ (Gray & Fersht, 1993; Perret et al., 1997). (3) A protein may fold while bound to GroEL (Corrales & Fersht, 1995; Gray & Fersht, 1993; Tsurupa et al., 1998). (4) The early inter-
GroEL-bound and unbound I_E can refold to I_L, and it is therefore proposed that GroEL binds I_E, and that both therefore likely to bind GroEL. It is therefore strongly (Shastry & Udgaonkar, 1995), and is patches, as seen in its ability to bind ANS barstar (mechanism 2) has exposed hydrophobic

a mechanism can be depicted as:

\[
\begin{align*}
U & \xrightarrow{K_{UI}} I_E \xrightarrow{k} I_L \xrightarrow{slow} N \\
K_D \downarrow & \text{r} \kappa \\
I_E G
\end{align*}
\]

Mechanism 3.

In this mechanism, the binding of chaperonin, G, to I_E is characterized by the dissociation constant \(K_D\). It is assumed that rate of binding is rapid compared to \(k\), and that a pre-equilibrium is established between U, I_E and I_EG before further transformation to I_L. Then the observed rate of folding, \(\lambda_2\) is given by \(\lambda_2 = k \left([I_E] + [I_EG]/([U] + [I_E] + [I_EG]) \right)\). Since [U], [I_E] and [I_EG] are the free concentrations in solution, and with the assumption that each GroEL molecule has only one binding site for barstar, \(\lambda_2\) is given by:

\[
\lambda_2 = k \times \left[\frac{2P_T K_{UI} + (P_T + G_T + K_D(1 + 1/K_{UI}))}{2P_T(1 + K_{UI})} \right] \\
\pm \sqrt{\left(P_T + G_T + K_D(1 + 1/K_{UI}) \right)^2 - 4P_T G_T} \\
\frac{2P_T(1 + K_{UI})}{12} \text{ s}^{-1}
\]

\(P_T\) and \(G_T\) are the total concentrations of barstar and GroEL, respectively. Figure 2 shows that the dependence of \(\lambda_2\) on GroEL concentration fits well to equation (1), indicating that mechanism 3 accounts well for the data. The values obtained for \(k\), \(K_{UI}\) and \(K_D\) are 116(±12) s\(^{-1}\), 1(±0.2) µM and 0.34(±0.1), respectively.

Distinguishing kinetically whether early folding intermediates, such as I_E, are productive on-pathway intermediates or are, alternately, unproductive off-pathway intermediates is a major challenge in the study of protein folding pathways (Baldwin, 1996). In mechanisms 1 and 2, I_E is assumed to be on-pathway, and therefore productive. It has not been possible to rule out the possibility that I_E instead represents an off-pathway, kinetically trapped intermediate ensemble, whose formation slows the overall rate of folding, as shown in mechanism 4:

\[
\begin{align*}
I_E & \xrightarrow{K_{UI}} U \xrightarrow{k} I_L \xrightarrow{slow} N \\
K_D \downarrow & \text{r} \kappa \\
I_E G
\end{align*}
\]

Mechanism 4.

According to mechanism 4, the observed fast rate of folding is given by \(\lambda_2 = k [U]/([U] + [I_E])\).

Even if I_E is indeed a dead-end ensemble as in mechanism 4, a thermodynamic coupling mechanism, similar to mechanism 3, will account for the acceleration of folding rates. It is only necessary that GroEL preferentially bind U and not I_E as in
mechanism 3, and that the GroEL-bound protein again be capable of folding. Indeed, GroEL is known to bind to the unfolded states of other proteins (Viihanen et al., 1991; Zahn & Pluckthun, 1994; Zahn et al., 1996b). If I_E is an off-pathway intermediate formed by a rapid non-specific hydrophobic collapse, in which hydrophobic surfaces with which GroEL might interact get largely buried, then it is conceivable that GroEL might bind preferentially to U rather than to I_E, and the following mechanism would account for the data:

\[
I_E \quad \frac{K_{UI}}{K_{IU}} \quad U \quad \frac{k}{\text{slow}} \quad I_L \quad \frac{1}{k} \quad N
\]

Mechanism 5.

The observed fast rate of folding, \(\lambda_2 = k ([U] + [UG]) / ([U] + [I_E] + [UG]) \) is then given by:

\[
\lambda_2 = k \times \left[\frac{2P_T + K_{UI}(P_T + G_T + K_D(1 + 1/K_{UI}))}{2P_T(1 + K_{UI})} \right.
\]

\[
\pm \frac{K_{UI}(P_T + G_T)}{2P_T(1 + K_{UI})} \right]
\]

The data in Figure 2 fit equally well to equation (2) as they do to equation (1). The values obtained for \(k, K_{UI}, \) and \(K_D \) from the use of equation (2) are \(116(\pm 12) \) s\(^{-1}\), \(1(\pm 0.2) \) M, and \(3(\pm 0.6) \), respectively.

The salient feature of both mechanisms 3 and 5, is that neither invokes catalysis of folding. The microscopic rate constant of folding is the same, whether barstar folds free in solution or while bound to GroEL. This suggests that the binding of GroEL to the transition state of folding is not any tighter than its binding to I_E in mechanism 3, or to U in mechanism 5. Moreover, its relatively weak binding \((K_D = 1 \) M) implies that the binding energy of GroEL \((\sim 0.5 \) kcal/mol\) in the maximum concentration used here \((\sim 3.5 \) M\) is too small to otherwise perturb the activation free energy of folding and, hence, the folding rate. The binding energy is, however, comparable in magnitude to the free energy of formation of I_E from U. Thus, in both mechanisms, the acceleration in folding is the consequence of the binding event shifting the equilibrium away from the species that does not fold directly: U in mechanism 3, and I_E in mechanism 5. Folding is accelerated because rapid coupling of the binding equilibrium to the \(U \leftrightarrow I_E \) equilibrium increases the concentration of species that can fold directly: I_E and I_EG in mechanism 3, U and UG in mechanism 5.

It is particularly pertinent that even in the scenario (mechanisms 4 and 5) where \(I_E \) is a kinetically trapped misfolded ensemble, it is unnecessary to postulate that GroEL binds \(I_E \) and catalyzes the rate of the \(I_E \rightarrow U \) unfolding transition that otherwise limits the overall folding rate, and thereby accelerates folding. Such an active role for GroEL in promoting the unfolding of a trapped intermediate and thereby facilitating the folding reaction has been suggested previously (Todd et al., 1996; Weissman et al., 1994; Zahn et al., 1996a).

In both mechanisms 3 and 5, it is assumed that GroEL does not bind the fully folded protein, N. In fact, both native gel electrophoresis and steady-state fluorescence studies have been unable to detect any interaction of GroEL with N (unpublished observations). While the possible interaction of I_E and N with GroEL is still under study, it should be noted that in both mechanisms 3 and 5, it is optional whether to exclude (or include) binding of GroEL to I_E or to N. Attempts were made to detect directly any interaction of GroEL with U. The highest concentration of urea that GroEL can tolerate is, however, only 1.5 M (Lissin, 1995), in which barstar remains completely folded; hence, it has not been possible to determine if GroEL binds unfolded U. It should be noted, however, that even if GroEL interacts with U, it does not necessarily mean that mechanism 5 is more appropriate to describe the data. GroEL might also bind \(I_E \) and if it does so tighter than it binds U, then mechanism 3 with an on-pathway \(I_E \) might still be more appropriate.

Since the \(U \leftrightarrow I_E \) transition is silent to fluorescence and CD change, it had not been possible to obtain the value of \(K_{UI} \) in previous studies (Agashe et al., 1995; Shastry & Udgaonkar, 1995). The thermodynamic coupling mechanisms 3 and 5, have now allowed values for \(K_{UI} \) to be determined: 0.33 for the former mechanism, and 3 for the latter. Thus, in the absence of GroEL, the pre-equilibrium mixture of U and I_E will consist of \(\approx 25 \% \) \(I_E \) or \(\approx 75 \% \) \(I_E \), depending on whether mechanism 2 or 4, respectively, is more appropriate. Previous monitoring of the \(U \rightarrow I_E \) reaction by a fluorescence energy transfer method (Agashe et al., 1995) had suggested that 70% of the energy transfer efficiency is restored within 6 ms, indicating that at least 70% of all molecules form \(I_E \) in the pre-equilibrium mixture. This extent of formation of \(I_E \) appears to be compatible only with mechanism 4, in which \(I_E \) is an off-pathway intermediate ensemble.

The only other protein whose refolding has been reported to be accelerated in the presence of GroEL alone, without the involvement of GroES and ATP, is lysozyme (Coyle et al., 1999). In that case it was suggested that GroEL plays an active role in the reorganization of non-native tertiary interactions, so that the rate of a slow folding transition involving domain docking is enhanced through catalysis. Here, it is shown that it is not necessary to invoke a catalytic mechanism to explain the enhancement of the folding rate by GroEL, but that a simple thermodynamic coupling mechanism suf-
fices. Previously, it has also been suggested that it is unnecessary to invoke an active catalytic role for GroEL to account for its unfolding activity (Zahn et al., 1994, 1996a,b), because a thermodynamic coupling mechanism, in which GroEL does not alter the microscopic rate constant of unfolding (Walter et al., 1996) is adequate. It is not implausible that the principal role of GroEL is to prevent aggregation by seclusion of folding intermediates, and that its apparent ability to catalyze folding or unfolding transitions is merely a reflection of its discriminating ability to differentially bind the multiple unstructured and structured forms that populate a protein folding pathway. From the data in Figures 2 and 4, it is estimated that the affinity for GroEL-ATP for barstar must be approximately five- to tenfold lower than that of GroEL alone. ATP and also co-chaperonin GroES may therefore play the roles of allosteric ligands in modulating the binding ability of GroEL.

Acknowledgments

We thank S. Raina for his gift of the GroEL expression plasmid, A. Horovitz, M.K. Mathew and F.N. Zaidi for discussions, and A. Horwich for his comments on the manuscript. This work was funded by the Tata Institute of Fundamental Research, the Wellcome Trust and the Department of Biotechnology, Government of India. J.B.U. is the recipient of a Swarnajayanti Fellowship from the Government of India.

References

Edited by C. R. Matthews

(Received 15 November 1999; received in revised form 27 January 2000; accepted 25 February 2000)