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1. Summary
The regional specialization of brain function has been well documented in the

mouse and fruitfly. The expression of regulatory factors in specific regions of

the brain during development suggests that they function to establish or main-

tain this specialization. Here, we focus on two such factors—the Drosophila
cephalic gap genes empty spiracles (ems) and orthodenticle (otd), and their ver-

tebrate homologues Emx1/2 and Otx1/2—and review novel insight into their

multiple crucial roles in the formation of complex sensory systems. While the

early requirement of these genes in specification of the neuroectoderm has

been discussed previously, here we consider more recent studies that elucidate

the later functions of these genes in sensory system formation in vertebrates and

invertebrates. These new studies show that the ems and Emx genes in both flies

and mice are essential for the development of the peripheral and central neur-

ons of their respective olfactory systems. Moreover, they demonstrate that the

otd and Otx genes in both flies and mice are essential for the development of

the peripheral and central neurons of their respective visual systems. Based

on these recent experimental findings, we discuss the possibility that the olfac-

tory and visual systems of flies and mice share a common evolutionary origin,

in that the conserved visual and olfactory circuit elements derive from

conserved domains of otd/Otx and ems/Emx action in the urbilaterian ancestor.
2. Introduction
Nervous system development in Drosophila re-employs developmental control

genes that initially pattern the early embryo. One class of such early patterning

genes is the cephalic gap genes. These are among the earliest zygotic genes to be

transcribed during embryogenesis in Drosophila. They are first expressed in the

anterior region of the blastoderm-stage embryo, under the control of maternal

genes, and are essential for the segmentation and identity of the embryonic

head segments [1–5]. Mutational inactivation of these early patterning genes

results in specific gap-like deficits in the cephalic anlagen that are due to the

inability to specify particular head segments [1–3,6–8]. Consequently, struc-

tures that normally derive from these head segments are deleted upon the

loss of the corresponding cephalic gap genes [8].

In addition to this early embryonic requirement of cephalic gap genes in

the specification of head segments, it has emerged in recent years that these

‘early patterning genes’ are also required later in Drosophila nervous system

http://crossmark.crossref.org/dialog/?doi=10.1098/rsob.120177&domain=pdf&date_stamp=2013-05-01
mailto:sonia@ncbs.res.in
mailto:vijay@ncbs.res.in


rsob.royalsocietypublishing.org
Open

Biol3:120177

2
development. Prominent examples of this are identified in

recent studies that investigate the multiple roles that cephalic

gap genes play in the formation of the peripheral and central

elements of complex sensory systems.

Nervous system development in Drosophila occurs during

two phases; the larval nervous system is generated during

embryogenesis and the adult nervous system is generated

primarily during postembryonic development [9,10]. Corre-

spondingly, complex sensory systems, such as those involved

in olfaction and vision, are essentially created twice during

development, once during embryogenesis for the larva and

once again during postembryonic development for the adult

fly. Remarkably, cephalic gap genes act during both phases

of nervous system development.

In this review, we consider two cephalic gap genes

(orthodenticle, otd and empty spiracles, ems) and their require-

ment in the development of sensory systems. We first focus

on ems, and review recent studies that reveal a requirement

of this cephalic gap gene in multiple aspects of the develop-

ment of the olfactory systems in both larval and adult

Drosophila. Subsequently, we focus on otd, and review recent

studies that show that this cephalic gap gene has important

multiple roles in the development of the visual systems of the

Drosophila larva and adult. In both cases, we also review data

that demonstrate comparable requirements for the vertebrate

homologues of these genes, Emx1/2 and Otx1/2, in the develop-

ment of the olfactory and visual systems of murine rodents,

which have olfactory and visual circuits that are strikingly simi-

lar to those seen in flies. Finally, in the light of these similarities,

we discuss the possible developmental and evolutionary

significance of this shared requirement for cephalic gap

gene action in the formation of complex sensory systems in

invertebrates and vertebrates.
3. Ems/Emx genes are required in the
olfactory systems of flies and mice

3.1. Ems in the development of the Drosophila larval
olfactory sensory system

During embryonic development of the Drosophila head neu-

roectoderm, the cephalic gap gene ems is expressed in a

broad, stripe-like anterior domain, where it acts in the speci-

fication of the so-called antennal segment of the head [1,3].

The ems-expressing region of the cephalic neuroectoderm

gives rise to the precursors of both the peripheral and the cen-

tral elements of the larval olfactory system (figure 1a).

The major larval olfactory sense organ is the dorsal organ,

which contains sensilla that are innervated by the dendrites of

21 olfactory sensory neurons (OSNs). These peripheral sensory

neurons target the larval antennal lobe in the deutocerebrum of

the central brain, where they synapse onto the olfactory inter-

neurons, the projection neurons and local interneurons, in

regions of dense synapses called ‘glomeruli’ [11]. Ems is

expressed in the region of the cephalic neuroectoderm that

gives rise to the sensory organ precursors of the dorsal organ

OSNs, and to the neural stem cell-like precursors, called neuro-

blasts, which generate the larval olfactory interneurons [8,12].

Mutant analysis shows that ems is required for the early

embryonic specification of the antennal segment neuroecto-

derm, from which both the peripheral and central elements
of the larval olfactory system derive [8,12]. However,

embryos that lack ems function are embryonic lethal, and

this initially prevented investigation of possible later roles

of ems in the development of olfactory neurons. More

recently, using techniques such as mosaic analysis with a

repressible cell marker [13] that allows the generation of

ems null mutant cells in an otherwise heterozygous animal,

and hence circumvents embryonic lethality, several studies

have found that ems continues to act in the later development

of the larval olfactory system. Thus, removal of ems from the

larval-specific OSNs and interneurons (after generation by

their respective precursors) results in the mistargeting of

some of these neuronal cells to the larval antennal lobe; sen-

sory neuron terminals are unable to restrict their dendrites to

individual glomeruli (cf. figure 1c,e), and interneuron term-

inals are seen outside the antennal lobe (cf. figure 1b,d ).

These experiments indicate that in addition to the previously

documented role that ems plays in the early specification of

specific subsets of larval OSNs and larval olfactory neuro-

blasts, ems is additionally required later in embryonic

development for correct neurite targeting in both of these

developing neural cell types in the larval brain.
3.2. Ems in the development of the Drosophila adult
olfactory sensory system

The peripheral and central elements of the adult olfactory

system are generated postembryonically and are largely differ-

ent from the larval olfactory circuit elements. The primary

peripheral olfactory sensory structure of the adult Drosophila
is the antenna. The third segment of the antenna contains

approximately 500 sensillar sense organs that are innervated

by the dendrites of 1200 adult OSNs. These adult-specific

OSNs are different from the larval OSNs since they derive

from sensory organ precursors in the eye–antennal imaginal

disc during early pupal life [14]. The axons of the OSNs project

to and terminate in the deutocerebral region of the adult brain

where they make synaptic contacts with the dendrites of

projection neurons and local interneurons (figure 1f ). The pro-

jection neurons relay sensory information from the antennal

lobe to higher brain centres, and the local interneurons,

whose terminals are confined to the antennal lobe, are respon-

sible for local processing of olfactory information [14]. Both

types of adult-specific olfactory interneurons are generated

during a second, postembryonic wave of neurogenesis by the

same deutocerebral neuroblasts that produce the larval-specific

olfactory interneurons [15–17]. Hence, apart from the few

embryonic born interneurons that persist through metamor-

phosis [18], all the adult-specific projection neurons and local

interneurons are generated postembryonically. It is noteworthy

that the precursors for both the peripheral and the central olfac-

tory circuit elements of the adult are lineally related to cells of

the antennal head segment; the antenna represents the appen-

dage of the antennal segment and the deutocerebrum of the

adult brain corresponds to the neuromere of the antennal

segment (figure 1a) [12,19].

Recent studies that have examined the postembryo-

nic expression and function of ems have found that this

embryonically acting cephalic gap gene is also involved post-

embryonically in the development of the adult-specific

olfactory system. Thus, Ems is expressed in a subset of the

adult-specific sensory organ precursors and in two of
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Figure 1. ems/Emx genes control the development of the olfactory system in flies and mice. (a) The origins of the olfactory neurons in Drosophila larvae and adults
can be traced back to the Ems-expressing antennal head segment (green stripe in the anterior of the embryo). The larval dorsal organ originates in this segment
(green arrow on the left). The neuroblasts that give rise to the deutocerebral larval antennal lobe (grey dotted lines in the brain) and the deutocerebral adult
antennal lobe (dark grey shaded area in the brain) delaminate from this Ems-expressing antennal head segment (middle green arrow). The eye – antennal disc
(EAD), the antennal part of which gives rise to the adult antenna, also incorporates into it cells from the Ems-expressing antennal head segment (green arrow on
the right). (b) The WT larval PNs innervating the larval antennal lobe and restricting their dendrites to the confines of the larval antennal lobe (white dotted line).
(c) The WT OR-45a expressing OSN with terminals confined to a single glomerulus in the antennal lobe (white dotted line). (d ) The PNs are null for ems function
and have innervations leaving the antennal lobe (magenta arrows; compare with PNs in (b)). (e) The OR-45a expressing OSN are null for ems function and they have
targeting defects (magenta arrow; compare with OSN in (c)). ( f,h) Compare the similarity in the olfactory circuits of flies and mice—OSNs (blue neurons) target
glomeruli (coloured circles) in the antennal lobe (AL)/olfactory bulb (OB), glomerular specific PNs/mitral – tufted cells (green neurons) take olfactory information to
higher brain centres and LNs/periglomerular cells ( pink neurons) perform local information processing between glomeruli. (g,i) Summary of the mutant phenotypes
observed in the OSNs, PNs and LNs in flies and mice, respectively, when these neurons/structures are null for ems/Emx function. ems null fly OSNs fail to respect
glomerular and antennal lobe boundaries (blue arrowheads; compare blue neurons in ( f,g)). ems null fly PNs from one neuroblast also fail to respect glomerular and
antennal lobe boundaries (green arrowheads; compare green neurons in ( f,g)). ems null fly LNs and PNs from another neuroblast undergo apoptosis (compare pink
neurons in ( f,g)). Emx null mice have disrupted nasal epithelia and fewer OSNs, which are unable to target the olfactory bulb (compare blue arrowheads and
neurons in (h,i); also compare nasal epithelium in (h,i)). The mitral – tufted cells (green neurons) and the periglomerular cells ( pink neurons) also fail to
target the glomerular layer (compare green and pink arrowheads in (h,i)), which is also disrupted (compare glomerular layers in (h,i)).
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the deutocerebral neuroblasts that produce adult-specific olfac-

tory interneurons [20,21]. In the sensory organ precursors, Ems

expression is seen as a short pulse during early pupal life [21].
In the neuroblasts, Ems is expressed throughout larval life and

also transiently expressed in the interneurons that derive from

these neuroblasts [16,20]. Mutant analyses show that ems is



rsob.royalsocietypublishing.org
Open

Biol3:120177

4
required for the development of the peripheral and central

olfactory system (figure 1g). In the peripheral olfactory

system, ems is involved in specification of specific sensillar

sense organs and also has a later role in axonal targeting of

the OSNs, which derive from these sense organs, to their

appropriate antennal lobe glomeruli [21]. In the central olfac-

tory system, the clonal inactivation of ems from one of the

neuroblasts results in the apoptosis of the interneurons that

derive from it, whereas a similar inactivation of ems from

another neuroblast results in interneurons that fail to innervate

their respective glomeruli correctly [16,20]. Thus, in the for-

mer case, the antennal lobe has far fewer projection neurons

(PNs) and local interneurons (LNs), and is therefore reduced

in size, whereas in the latter case the PNs fail to restrict their

dendrites to the confines of a given glomerulus, and on

occasion even have innervations outside the antennal lobe.

Taken together, these findings show that ems has multiple

roles in the development of peripheral and central olfactory sen-

sory elements of the larval and adult olfactory systems. Might

the vertebrate homologues of ems, the Emx1/2 genes, also

have multiple roles in the development of peripheral and

central neuronal elements of the mammalian olfactory system?

3.3. The mouse olfactory circuit, which shares
similarities with flies, requires the ems
homologues, Emx1/2, for development

A striking feature of the olfactory system in insects is the simi-

larity in basic circuit organization that it shares with the

mammalian olfactory system [22,23]. Thus, as in Drosophila,

in the mouse olfactory system, OSNs express odorant receptor

genes in a mutually exclusive manner, and the axons of those

OSNs that express a given receptor converge onto the same glo-

merulus. Moreover, in the glomeruli, OSNs make synaptic

contacts with primary output interneurons, the projection

neurons in the fly and the mitral–tufted cells in the mouse,

as well as with local interneurons/periglomerular cells that

interconnect glomeruli (figure 1h). The layout of the fly and

mammalian olfactory circuitry therefore is essentially the same.

In addition, there are remarkable similarities in the

expression and function of ems and its mammalian homologues

Emx1/2. Thus, the mammalian Emx1/2 genes are expressed

during early embryonic development in the olfactory placodes

and developing nasal epithelium, as well as in the developing

forebrain, including the olfactory bulb. (Emx1/2 genes are also

expressed in other areas of the brain that are known to be

involved in olfactory processing [24–27].) Mutants for Emx1/2
have severe defects in the various brain regions, including

those involved in olfaction (figure 1i). The nasal epithelium,

where the cell bodies of the OSNs reside, is disrupted. The

axons of the OSNs form a normal olfactory nerve; however,

this nerve does not form connections with the olfactory bulb,

implying that the OSNs are unable to target correctly. The olfac-

tory bulb of these mutants is extremely reduced in size, and the

mitral cell layer of the olfactory bulb is disorganized [28–32]. In

addition to these morphological defects, Emx2 mutants mani-

fest aberrant expression of various odorant receptor genes [33].

In summary, similar to the fly ems gene, the mammalian

Emx1/2 genes are expressed in the developing peripheral

and central olfactory systems, and are crucial for their

proper development. Could other cephalic gap genes play

comparable key roles in the development of sensory systems?
4. Otd/Otx genes are required in the visual
systems of flies and mice

4.1. Otd in the development of the Drosophila larval
visual sensory system

During embryonic development of the Drosophila head neu-

roectoderm, the cephalic gap gene otd is expressed in a

broad domain anterior to that of ems gene expression where

it is thought to act in the specification of the so-called

ocular segment of the head [7,8]. This Otd-expressing

region gives rise to the cells of the peripheral and central

larval visual system (figure 2a).

The major larval visual organ is Bolwig’s organ, a simple

paired structure of 12–14 photoreceptor neurons that extend

their axons towards the larval optic neuropile and brain

[34,35]. Two distinct sets of central interneurons are postsyn-

aptic to the larval photoreceptor neurons: three optic lobe

pioneer neurons that derive from the optic placode, and four

pigment dispersing factor (PDF) expressing lateral neurons

that are part of a central protocerebral brain lineage [35–37].

During embryogenesis, Otd is expressed in the developing

photoreceptor neurons of Bolwig’s organ, and this expression

is maintained in these sensory cells throughout their larval

and adult life [38].

Mutant analysis indicates that otd has both early and late

roles in the development of Bolwig’s organ. In otd null

mutant embryos, early specification of Bolwig’s organ does

not occur and hence photoreceptor cells are not formed

[8,39]. Hypomorphic otd alleles reveal an additional later

requirement for the gene in the correct expression of rhodop-

sin (Rh) subtypes in the differentiating larval photoreceptors.

Thus, whereas in the wild-type (WT) eight of the larval

photoreceptors express Rh5 and the other four express Rh6,

in the otd mutants all photoreceptors express Rh6, and Rh5

expression is absent.

It is likely that otd also acts during development of the larval

optic interneurons, given the large expression domain of otd in

the ocular segment. However, current data on the expression

and function of otd in the developing larval optic lobe pioneer

neurons and PDF-expressing lateral neurons are lacking.
4.2. Otd in the development of the Drosophila adult
visual sensory system

The major visual sense organs of the adult fly are the com-

pound eyes, which are generated postembryonically [40]

and are distinct from the larval Bolwig’s organ, which differ-

entiates into a minor adult visual structure called the

Hofbauer–Buchner eyelet [41]. Each of the compound eyes

comprises approximately 800 individual units called ommati-

dia, and each ommatidium consists of eight photoreceptor

cells. These photoreceptors project their axons into the optic

lobes, which consist of four highly structured neuropiles

(the lamina, medulla, lobula and lobula plate) that process

and relay visual information to higher brain centres (figure

2b) [42]. The compound eyes develop from the eye-specific

domain of the eye–antennal disc during early pupal life,

and this domain is thought to derive from the ocular segment

(figure 2a) [19]. Lineage analysis using mutants that delete
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Figure 2. otd/Otx genes control the development of the visual system in flies and mice. (a) The origins of the visual neurons in Drosophila larvae and adults can be
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various head segments suggests that the optic lobes also

derive from the ocular segment [43].

Consistent with their origin from the ocular segment,

these adult visual structures express the otd gene during

their development. Thus, Otd is expressed in all of the devel-

oping photoreceptors of the compound eyes (and the

Hofbauer–Buchner eyelet [38,44–46]). In the compound eye

photoreceptors, otd is required for proper rhabdomere for-

mation, as well as for the correct expression of Rh3, Rh5

and Rh6 rhodopsins (figure 2c) [46–48]. In the absence of
otd, the photoreceptor rhabdomeres appear disorganized

owing to a failure in the morphogenesis of these structures.

Rh3 and Rh5 are totally eliminated, the domain of Rh6

expression expands widely, and Rh1 is ectopically expressed

[46,47,49–51]. The otd gene has been shown to act in the

initial specification of the optic lobe and may also be required

in the central interneurons of the adult visual system [8,43].

However, currently there is little information on a later role

of otd in the interneurons of the optic lobe or in the central

targets of the ocellar photoreceptors, although higher centres
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in the protocerebrum involved in visual processing and

memory are affected by the loss-of-function of otd [12].

In summary, the cephalic gap gene otd is required for the

development of larval and adult visual sense organs. More-

over, it may also play important roles in the development

of the optic lobe and its visual interneurons.

4.3. The mouse visual circuit, which shares similarities
with flies, requires the otd homologues, Otx1/2,
for development

As noted by Cajal a century ago, there are remarkable simi-

larities in the visual circuits of insects and mammals [52].

Furthermore, recent cellular and molecular studies indicate

that these circuits are based on common design principles

in the two animal groups [42]. Thus, as in Drosophila, in the

mouse visual system, different types of photoreceptor cells

project in parallel to a small number of interneuronal types.

Moreover, these interneurons are arranged in an ordered

manner in multiple parallel cell layers, which are intercon-

nected orthogonally such that spatial relationships are

retinotopically preserved across layers (figure 2b).

In addition to these similarities in circuit organization,

there are parallels in the molecular mechanisms of visual

system development in fly and mouse, and these are exempli-

fied by the comparable expression and function of otd and its

mammalian homologues Otx1/2 [53,54]. In early mouse

embryogenesis, Otx1 and Otx2 are expressed in the precur-

sors of developing sensory organs such as the optic vesicle

and the otic vesicle, as well as in the anlagen of the forebrain.

Both genes are expressed throughout the optic vesicle at early

stages; subsequently, their expression becomes more regiona-

lized. Otx1 continues to be transcribed later in development

in the iris, ciliary process and lachrymal gland, whereas

Otx2 becomes restricted to the dorsal part of the optic vesicle

and the presumptive retinal pigment epithelium territory

[24,53,55,56]. Later in embryogenesis, as the eye undergoes

regional specification, a second wave of Otx2 expression

appears in the neural retina in neuronal and glial precursors

[55]. Otx genes are also expressed in higher brain centres

associated with vision; the developing lateral geniculate

and superior colliculus express Otx1 and Otx2, and Otx1 is

expressed in layers 5 and 6 of the visual cortex as well [56,57].

Loss-of-function of Otx genes results in a variety of

defects in the visual system. In Otx1 null mice, the ciliary pro-

cess is absent, the iris is reduced and the eye-associated

glands do not differentiate [58]. Otx2 null animals are early

embryonic lethal owing to severe defects in gastrulation

and head formation [59–61]. Allelic combinations of Otx1
and Otx2 that avoid early lethality reveal visual system

defects such as the drastic reduction of the eyes, the malfor-

mation of the lens and retina, and the defasciculation of the

retinal ganglion cell axons in the optic nerve (figure 2c)

[58]. Conditional knockouts of Otx2 during eye development

result in a comparable reduction of the eye as well as a con-

version of photoreceptors to amacrine cells [62]. Loss of

Otx1 in the visual cortex results in aberrant connectivity of

cortical neurons with subcortical projections, suggesting a

role for Otx1 in the refinement of the cortical/subcortical cir-

cuitry [63].

Interestingly, Crx, which was identified as a member of the

Otx family of transcription factors, was also shown to be
specifically expressed in photoreceptor neurons in

two phases [64,65]. During embryonic development, Crx is

expressed in the cone photoreceptors, but it is most highly

expressed postnatally in the differentiating rod photoreceptors

[64]. Mice deficient for Crx function exhibit several defects in

the retina. The proximal terminals of photoreceptor neurons

fail to elaborate outer segment structures, a phenotype reminis-

cent of the defective rhabdomeres of otd null photoreceptors in

Drosophila (figure 2c) [46,64]. The distal terminals of Crx null

photoreceptors are also defective in that they are unable to

initiate appropriate synaptogenesis in the outer plexiform

layer [66]. Furthermore, there appears to be a degeneration of

photoreceptor neurons, as evidenced by the progressive loss

of nuclei from the nuclear layer of the retina [67]. A variety of

in vitro and in vivo assays have demonstrated that Crx regulates

the expression of many photoreceptor genes [65,68,69]. Crx
null mice have a higher level of spontaneous activity of the

bipolar cells in the retina, resulting in an increased synaptogen-

esis between the bipolar cells and the retinal ganglion cells [70].

In summary, similar to the fly otd gene, the mammalian Otx1/
2 genes are expressed in the developing peripheral and central

visual systems, and are crucial for their correct development.

4.4. Coincidence, causality or conservation?
In this review, we have highlighted the functional similarities

in the pervasive requirement of the ems/Emx genes of flies

and mice in the development of the olfactory sensory systems

of these animals, which share striking morphological simi-

larities. Thus, the fly ems acts in the development of the

larval peripheral and central olfactory system, and the adult

peripheral and central olfactory system; the mouse homol-

ogues of ems, Emx1/2, act in the development of the mouse

peripheral olfactory system, as well as in the mouse central

olfactory system. Moreover, similar to the pervasive require-

ment of ems/Emx genes in olfactory system development,

the visual sensory systems of flies and mice, which also

share striking structural similarities, require the action of

another cephalic gap gene, otd, and its mouse homologues,

Otx1/2 (and Crx). Thus, the fly otd acts in the development of

the larval peripheral and central visual system, and the adult

peripheral and central visual system; the mouse homologues

of otd, Otx1/2, act in the development of the mouse peripheral

visual system, as well as in the mouse central visual system.

Are these similarities purely coincidental, or is there a develop-

mental or evolutionary explanation behind them?

Developmental control genes have been shown to act

recurrently in many related and unrelated developmental

processes and contexts, and hence the possibility that these

similarities are purely coincidental cannot be completely

ruled out. However, a more reasonable view is that these

remarkable similarities in cephalic gap gene action in the con-

struction of two sensory systems that are structurally so

similar are not purely coincidental.

One possible explanation for the striking similarities in

cephalic gap gene action, emanating from the latter view, is

that they reflect lineage relationships. During early embryo-

nic development in insects and mammals, both ems/Emx
and otd/Otx genes act in large, evolutionarily conserved

domains in the anterior cephalic neuroectoderm. The neural

cells that derive lineally from these cephalic domains (and

hence fate-map to these domains) may continue to require

the cephalic gap gene during their subsequent development.
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For example, in Drosophila, peripheral and central elements of

the larval and adult olfactory system are generated by precur-

sors that derive from the Ems-expressing antennal segment,

and many of these elements continue to require the ems gene

reiteratively during their embryonic and postembryonic devel-

opment. Thus, the recurrent utilization of ems during the

development of the fly olfactory system might merely be a

manifestation of the developmental history of the cells that

compose the olfactory system. Similar considerations hold for

the otd gene in fly visual system development, as well as for

the Emx and Otx genes in mammalian olfactory and visual

system development. Interestingly, the fact that both periph-

eral and central elements of a given sensory system require

the same cephalic gap gene could serve to genetically couple

the development of the sense organs and their central brain

circuitry such that both evolve in a coordinated manner.

There is also another possible explanation consistent with

the conserved uses of genes during development as outlined

earlier. The remarkable similarities in cephalic gap gene

expression and function during the development of sensory

systems in both flies and mammals could be a reflection of

a common evolutionary origin of these sensory systems.

Thus, it is possible that the sensory systems of extant insects

and vertebrates have evolved from sensory systems that were

already present in the last urbilaterian ancestor of insects and

vertebrates. While this hypothesis needs careful testing, there

is some evidence to support it. Recent work has shown that

expression and function of many of the developmental con-

trol genes involved in anteroposterior and dorsoventral
patterning of the nervous system, including the cephalic

gap genes, are conserved in invertebrates and vertebrates

[71–73]. Moreover, there is increasing evidence that specific

neuronal types, and even complex associative brain areas

might be conserved among bilaterian animals [74–77]. These

findings suggest that conserved developmental control genes

and patterning mechanisms might already have been present

in the last common urbilaterian ancestor, and these in turn

could have given rise to a reasonably complex nervous

system over 600 Myr ago [78]. In this scenario, the similarities

in the development of sensory systems in insects and mammals

that we have highlighted here might reflect their common

origin from ancestral sensory systems with comparable devel-

opmental features. If this is the case, then the strikingly similar

organization of the olfactory and visual circuitry in insects and

mammals might be due, at least in part, to a common evol-

utionary origin from ancestral olfactory and visual systems,

which arose from embryonic domains that expressed ancestral

homologues of ems/Emx and otd/Otx.
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